Determining the Seepage Stability of Fractured Coal Rock in the Karst Collapse Pillar

Author:

Zhang Tianjun1,Pang Mingkun1ORCID,Zhang Xiufeng2,Pan Hongyu1

Affiliation:

1. College of Safety Science and Engineering, Xi’an University of Science and Technology, Xi’an 710054, China

2. College of Science, Xi’an University of Science and Technology, Xi’an 710054, China

Abstract

The karst collapse pillar (KCP) is a common geological structure in the coal mines of northern China. KCPs contain many fractured coal rocks, which can easily migrate under the action of high-pressure water. The destruction or instability of the cementation structure between the rocks can directly induce coalmine water-inrush accidents. To study the seepage stability of cemented and fractured coal rock under triaxial pressures, a self-designed triaxial seepage testing system was used and the permeability k and non-Darcy factor β of the cemented and fractured coal rock were tested. Furthermore, the 1D non-Darcy seepage equations were used to calculate the evolution criteria of the seepage loss stability. The results show the following: (1) The cemented structure in the KCP under the triaxial pressures can be easily destroyed. The damaged coal and rock body mainly exists in bulk form, and the permeability depends mainly on the effective stress of the particles. (2) The seepage process in the KCP structure is a combination of pore flow, fracture flow, and pipe flow, and the transition of the seepage state is closely related to the change in the magnitude of β. (3) Under the long-term effect of confined underground water, the migration of small fractured particles in the KCP will increase the structural porosity. If the parameter βk2 reaches the threshold value, the seepage system will evolve into a pipeline flow state, eventually causing a water-inrush accident.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Civil and Structural Engineering

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3