Surface Settlement Damage Model of Pile-Anchor Supporting Structure in Deep Excavation

Author:

Li Yuanxun1ORCID,Zhang Wuyu1,Jiang Ningshan1,Li Hui1

Affiliation:

1. School of Civil Engineering, Qinghai University, Xining, China

Abstract

In damage mechanics, the deep excavation of soil is a process of damage development, and soil failure can be considered a process of continuously transforming undisturbed soil to damaged soil. Therefore, this study considered the occurrence of soil damage during the pit excavation, established a soil damage model, damage evolution equation, and soil damage constitutive relationship, and then deduced a calculate model of the pile displacement under the consideration of soil damage. Based on the principle of the stratum loss method, the surface settlement around a deep excavated pit was assumed as a skewed distribution curve, and the surface settlement of the pile-anchor supporting pit was solved. Based on this established method, finite element analysis software was used to calculate the surface subsidence for a field case, and the numerical results were compared with monitoring data in the field. The results revealed that, to a certain extent, soil damage affected the distribution of surface settlement in excavated pits. With the development of soil damage, the mechanical properties of soil gradually decreased, which led to increased surface settlement and changes in the direction of the excavation pit. Because soil damage is an important factor causing surface settlement, it is meaningful to consider soil damage when calculating the surface settlement in the deep excavation of pits.

Funder

China Qinghai Provincial Science & Technology Department

Publisher

Hindawi Limited

Subject

Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3