Study on the Diversity of Fungal and Bacterial Communities in Continuous Cropping Fields of Chinese Chives (Allium tuberosum)

Author:

Gu Yizhu1,Wang Yuxin1ORCID,Wang Pingzhi1,Wang Chaonan1,Ma Jinhai2,Yang Xiaofei2,Ma Donghao2,Li Meihuan2

Affiliation:

1. College of Water Resources & Civil Engineering, China Agricultural University, Haidian, Beijing, China

2. Henan Jiuxing Institute of Biotechnology, Pingdingshan, Henan, China

Abstract

In this study, high-throughput sequencing technology was used to analyse the diversity and composition of fungal and bacterial communities in continuous cropping soil of Chinese chives. The soil nutrient was also measured to explore the rationality of current fertilization management. These results can provide a basis for the prevention and control of the continuous cropping obstacles of Chinese chives and further scientific management. Soil samples from fields continuously cropped with Chinese chives for one year, three years, and five years were collected and analysed. The results showed that the nutrient content of TP, AP, AK and TK increased significantly with increasing continuous cropping years. Short-term continuous cropping soil nutrients have not deteriorated. Alpha-diversity analysis showed that significant differences were not found in the diversity of the fungal and bacterial community among different years. Ascomycota, Basidiomycota and Mortierellomycota were the three most dominant fungal phyla. Proteobacteria, Actinobacteria, Chloroflexi and Acidobacteria were the dominant bacterial phyla. Continuous cropping makes Fusarium increase, and the beneficial bacteria Pseudomonas decreased significantly. According to the correlation heat map analysis of environmental factors, excessive phosphorus may lead to the increase of Fusarium, potassium may promote the proliferation of beneficial bacteria in the continuous cropping process, and it is necessary to regulate the application of phosphate and potassium fertilizer.

Funder

Beijing Dairy Industry Innovation Team

Publisher

Hindawi Limited

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3