Spatiotemporal Assessment of Temperature Data Products for the Detection of Warming Trends and Abrupt Transitions over the Largest Irrigated Area of Pakistan

Author:

Nawaz Zain12,Li Xin34,Chen Yingying34ORCID,Wang Xufeng12,Zhang Kun3,Nawaz Naima5,Guo Yanlong3,Meerzhan Akynbekkyzy12

Affiliation:

1. Key Laboratory of Remote Sensing of Gansu Province, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China

2. University of Chinese Academy of Sciences, Beijing 100049, China

3. Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China

4. CAS Center for Excellence in Tibetan Plateau Earth Sciences, Beijing 100101, China

5. Department of Rural Sociology, University of Agriculture, Faisalabad 38040, Pakistan

Abstract

Reliable and accurate temperature data acquisition is not only important for hydroclimate research but also crucial for the management of water resources and agriculture. Gridded data products (GDPs) offer an opportunity to estimate and monitor temperature indices at a range of spatiotemporal resolutions; however, their reliability must be quantified by spatiotemporal comparison against in situ records. Here, we present spatial and temporal assessments of temperature indices (Tmax, Tmin, Tmean, and DTR) products against the reference data during the period of 1979–2015 over Punjab Province, Pakistan. This region is considered as a center for agriculture and irrigated farming. Our study is the first spatiotemporal statistical evaluation of the performance and selection of potential GDPs over the study region and is based on statistical indicators, trend detection, and abrupt change analysis. Results revealed that the CRU temperature indices (Tmax, Tmin, Tmean, and DTR) outperformed the other GDPs as indicated by their higher CC and R2 but lower bias and RMSE. Furthermore, trend and abrupt change analysis indicated the superior performances of the CRU Tmin and Tmean products. However, the Tmax and DTR products were less accurate for detecting trends and abrupt transitions in temperature. The tested GDPs as well as the reference data series indicate significant warming during the period of 1997–2001 over the study region. Differences between GDPs revealed discrepancies of 1-2°C when compared with different products within the same category and with reference data. The accuracy of all GDPs was particularly poor in the northern Punjab, where underestimates were greatest. This preliminary evaluation of the different GDPs will be useful for assessing inconsistencies and the capabilities of the products prior to their reliable utilization in hydrological and meteorological applications particularly over arid and semiarid regions.

Funder

Chinese Academy of Sciences

Publisher

Hindawi Limited

Subject

Atmospheric Science,Pollution,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3