Cell Growth Inhibition Effect of DsiRNA Vectorised by Pectin-Coated Chitosan-Graphene Oxide Nanocomposites as Potential Therapy for Colon Cancer

Author:

Katas Haliza1ORCID,Mohd Amin Mohd Cairul Iqbal1,Moideen Nursyafiqah1,Ng Li Ying1,Megat Baharudin Puteri Annisa Adhwa1

Affiliation:

1. Centre for Drug Delivery Research, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia

Abstract

Colonic-targeted drug delivery system is widely explored to combat colon-related diseases such as colon cancer. Dicer-substrate small interfering RNA (DsiRNA) has been explored for cancer therapy due to its potency in targeting specific gene of interest. However, its application is limited by rapid degradation and poor cellular uptake. To address this, chitosan-graphene oxide (CS-GO) nanocomposite was used to deliver DsiRNA effectively into cells. Additionally, pectin was used as compatibilization agent to allow specific delivery to the colon and protect the nanocomposites from the harsh environment in the stomach and small intestine. CS-GO-DsiRNA nanocomposites were prepared by electrostatic interaction between CS and GO prior to coating with pectin. The mean particle size of CS-GO-DsiRNA-pectin nanocomposites was 554.5±124.6 nm with PDI and zeta potential of 0.47±0.19 and −10.7±3.0 mV, respectively. TEM analysis revealed smooth and spherical shape of CS-GO-DsiRNA nanocomposites and the shape became irregular after pectin coating. FTIR analysis further confirmed the successful formation of CS-GO-DsiRNA-pectin nanocomposites. Furthermore, the nanocomposites were able to entrap high amount of DsiRNA (% entrapment efficiency of 92.6±3.9%) with strong binding efficiency. CS-GO-DsiRNA-pectin nanocomposites also selectively inhibited cell growth of colon cancer cell line (Caco-2 cells) and were able to decrease VEGF level significantly. In a nutshell, pectin-coated DsiRNA-loaded CS-GO nanocomposites were successfully developed and they have a great potential to deliver DsiRNA to the colon effectively.

Funder

Universiti Kebangsaan Malaysia

Publisher

Hindawi Limited

Subject

General Materials Science

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3