A Deep Learning-Enabled Composition System Based on Piano Score Recognition

Author:

Shang Rui1ORCID

Affiliation:

1. College of Music, Guangdong Polytechnic Normal University, Guangzhou, Guangdong 510000, China

Abstract

Piano is used for music and comprises a stringed keyboard instrument wherein the strings are tapped by softer-coated wooden hammers. The score providing music for the piano, often a compressed transcription of orchestral music, is referred to as piano score. Presently, the Internet is overflowing with music score resources. Having so many music score resources available, professional learners and amateur music lovers are unable to identify and obtain music score information that matches their needs and wasting valuable time. Due to the rapid development of deep learning algorithms, some individuals utilize these algorithms to detect piano scores and construct composition systems, reducing the need of traditional machine learning algorithms on manual design and music knowledge guidelines. This paper uses the deep learning algorithm to construct piano score recognition framework based on K-Nearest Neighbor (KNN) algorithm and formulates the recognition system into multinote that significantly improves the recognition rate for the system. The self-attention mechanism is then introduced in order to build a composition system based on a deep learning algorithm in which composition training and processes are described. Finally, a comparative experiment is conducted to evaluate the recognition accuracy for the KNN-based piano score recognition system. The results show that highest recognition accuracy of this system is 67.5%. The effect of composition system is evaluated based on prediction accuracy of notes. Three experiments are conducted to train the composition notes. As a result, the prediction accuracy of experiments 1, 2, and 3 is 89.2%, 91.8%, and 92.7%, respectively, indicating that the system has a high prediction accuracy and a perfect composition effect.

Publisher

Hindawi Limited

Subject

Computer Networks and Communications,Computer Science Applications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3