Affiliation:
1. Department of Materials Science and Engineering, Xi’an University of Technology, Xi’an 710048, China
2. Sichuan College of Architectural Technology, Deyang 618000, China
Abstract
Foam concrete with different dry densities (400, 500, 600, 700, and 800 kg/m3) was prepared from ordinary Portland cement (P.O.42.5R) and vegetable protein foaming agent by adjusting the water-cement ratio through the physical foaming method. The performance of the cement paste adopted, as well as the structure and distribution of air pores, was characterized by a rheometer, scanning electron microscope, vacuum water saturation instrument, and image analysis software. Effects of the water-cement ratio on the relative viscosity of the cement paste, as well as pore structure and strength of the hardened foam concrete, were discussed. Results showed that water-cement ratio can influence the size, distribution, and connectivity of pores in foam concrete. The compressive strength of the foam concrete showed an inverted V-shaped variation law with the increase in water-cement ratio.
Funder
National Natural Science Foundation of China
Subject
General Engineering,General Materials Science
Cited by
67 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献