Mesoscopic Finite Element Method of the Effective Thermal Conductivity of Concrete with Arbitrary Gradation

Author:

Huang Pingming1,Zhao Yu1,Niu Yanwei1,Ren Xiang2,Chang Mingfeng3ORCID,Sun Yamin1ORCID

Affiliation:

1. School of Highway, Changan University, Xian 710064, China

2. School of Architecture and Civil Engineering, Xian University of Science and Technology, Xian 710064, China

3. School of Materials Science and Engineering, Changan University, Xian 710064, China

Abstract

The effective thermal conductivity (ETC) of concrete is the most important parameter in determining the temperature field and thermal stresses. A 2D random polygonal aggregate model and its modified model considering porosity were established in this paper in order to partially replace the experiment for parametric analysis on the ETC of concrete and to save the experiment cost. A mesoscopic finite element method for the ETC of concrete with arbitrary gradation was also proposed. In addition, the influence factors (thermal conductivity of coarse aggregate, cement mortar, and volume fraction of coarse aggregate) of the effective thermal conductivity of concrete were analyzed. The results show that the 2D gradation curve of coarse aggregates is proved to exist, and there is a corresponding relationship between the 2D and 3D gradation curves of coarse aggregates. The effective thermal conductivity of concrete has a positive exponential relationship with the volume fraction of coarse aggregates, a positive logarithm relationship with the thermal conductivity of coarse aggregates, and a positive linear correlation with the thermal conductivity of cement mortar. The most practical way to improve the effective thermal conductivity of concrete is to increase the ETC of the cement mortar, but the most effective way is to replace the aggregate with a material with a high thermal conductivity.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Engineering,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3