Segmentation of Breast Tubules in H&E Images Based on a DKS-DoubleU-Net Model

Author:

Chen Yuli1ORCID,Zhou Yao1ORCID,Chen Guoping1ORCID,Guo Yuchuan2ORCID,Lv Yanquan2ORCID,Ma Miao1ORCID,Pei Zhao1ORCID,Sun Zengguo1ORCID

Affiliation:

1. School of Computer Science, Shaanxi Normal University, Xi’an, China

2. Shandong Junteng Medical Technology Co., LTD, China

Abstract

The formation of breast tubules plays an important role in the pathological grading of breast cancer. Breast tubules surrounded by a large number of epithelial cells are located in the subcutaneous tissue of the chest. The shapes of breast tubules are various, including tubular, round, and oval, which makes the process of breast tubule segmentation a difficult task. Deep learning technology, capable of learning complex data structures via efficient representation, could help pathologists accurately detect breast tubules in hematoxylin and eosin (H&E) stained images. In this paper, we propose a deep learning model named DKS-DoubleU-Net to accurately segment breast tubules with complex appearances in H&E images. The proposed DKS-DoubleU-Net model suggests using a DenseNet module as the encoder of the second subnetwork of DoubleU-Net, which utilizes dense features between layers and strengthens the propagation of features extracted in all previous layers, in order to better discover the intrinsic characteristics of breast tubules with complex structures and diverse shapes. Moreover, a feature fusing module called Kernel Selecting Module (KSM) is inserted before each output layer of the two U-Net branches of the DoubleU-Net, to implement a multiscale feature fusion via a self-adaptive kernel selecting for the sake of accurate segmentation of breast tubules in different sizes. The experiments on the public BRACS dataset and a private clinical dataset have shown that our model achieves better segmentation performance, compared to the state-of-art models of U-Net, DoubleU-Net, ResUnet++, HRNet, and DeepLabV3+. Specifically, on the public BRACS dataset, our method produced an F1-Score of 92.98%, which outperforms the F1-Score of U-Net, DoubleU-Net, and HRNet by 4.24%, 0.37%, and 1.68%, respectively, and is much better than performances of DeepLabV3+ and ResUnet++ by 7.83% and 23.84%, respectively. On the private clinic dataset, the proposed model achieved an F1-Score of 73.13%, which has shown an improvement of 10.31%, 1.89%, 4.88%, 15.47%, and 31.1% to the performances of the U-Net, DoubleU-Net, HRNet, DeepLabV3+, and ResUnet++, respectively. Superior performance could also be observed when comparing the proposed DKS-DoubleU-Net with the others using the metrics of Dice and mIou.

Funder

Central University/Public Health and Health Research Project

Publisher

Hindawi Limited

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3