Design and Application of BP Neural Network Optimization Method Based on SIWSPSO Algorithm

Author:

Chu Lina1ORCID

Affiliation:

1. Department of Basic Education, Chongqing Creation Vocational College, Chongqing 402160, China

Abstract

BP neural network method can deal with nonlinear and uncertain problems well and is widely used in the construction of classification, clustering, prediction, and other models. However, BP neural network method has some limitations in fitting nonlinear functions, such as slow convergence speed and easy local optimal convergence rather than global optimal convergence. In order to solve the insufficiency, the optimization approach applying BP neural networks is discussed. This paper proposes a simplified PSO algorithm based on stochastic inertia weight (SIWSPSO) algorithm to optimize BP neural network. In order to test the effect and applicability of the method, this paper established a quality safety risk warning based on SIWSPSO-BP network and selected the detection data of intelligent door lock products for risk warning experiment. The experimental results show that the convergence speed of SIWSPSO-BP model was increased by two times and the accuracy of product quality risk warning reached 85%, which significantly improves the accuracy and learning efficiency of risk warning.

Funder

Chongqing Creation Vocational College

Publisher

Hindawi Limited

Subject

Computer Networks and Communications,Information Systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3