PySCP: A Multiple-Phase Optimal Control Software Using Sequential Convex Programming

Author:

Zhang Daxi1ORCID,Zhang Yulin23ORCID

Affiliation:

1. School of Aerospace Science and Technology, National University of Defense Technology, Changsha 410073, China

2. School of Control Science and Engineering, Zhejiang University, Hangzhou 310027, China

3. Huzhou Institute of Zhejiang University, Huzhou 310027, China

Abstract

Optimal control problems are common in aerospace engineering. A Python software program called PySCP is described for solving multiple-phase optimal control problems using sequential convex programming methods. By constructing a series of approximated second-order cone programming subproblems, PySCP approaches to the solution of the original optimal control problem in an iterative way. The key components of the software are described in detail, including convexification, discretization, and the adaptive trust region method. The convexification of the first-order differential dynamic equation is implemented using successive linearization. Six discretization methods, including zero-order hold, first-order hold, Runge-Kutta, and three hp pseudospectral collocation methods, are implemented so that different types of optimal control problems can be tackled efficiently. Adaptive trust region method is employed, and robust convergence is achieved. Both free-final-time problem and fixed-final-time problem can be solved by the software. The application of the software is demonstrated on three optimal control problems with varying complexity. PySCP provides researchers a useful toolkit to solve a wide variety of optimal control problems using sequential convex programming.

Funder

Huzhou Distinguished Scholar Program

Publisher

Hindawi Limited

Subject

Aerospace Engineering

Reference64 articles.

1. Overview of some optimal control methods adapted to expendable and reusable launch vehicle trajectories

2. Rapid optimization of ascent trajectory for solid launch vehicles based on Gauss pseudospectral method;X. Yang;Journal of Astronautics,2011

3. Trajectory optimization of solid launch vehicle based on Hp-adaptive pseudospectral method;H. Bei;Aerospace Control,2012

4. Optimal trajectories and normal load analysis of hypersonic glide vehicles via convex optimization

5. Optimal Low Thrust Trajectories to the Moon

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3