Coupling of Contact Nucleation Kinetics with Breakage Model for Crystallization of Sodium Chloride Crystal in Fluidized Bed Crystallizer

Author:

Zheng Dan1ORCID,Zou Wei1,Yan Jie1,Peng Chuanfeng1,Fu Yuhang1,Li Bo1,Zeng Li1,Huang Tinghong1,Zhang Fengzhen1

Affiliation:

1. Department of Chemical Engineering, Sichuan University of Science & Engineering, Zigong, Sichuan 643000, China

Abstract

There are many nucleation theory-based different mechanisms. These theories mainly focused on production parameters in the crystallization and less on physical properties of crystals. In this research, a new model of contact nucleation theory coupled with the breakage mechanism of crystals is applied to describe the collision process in sodium chloride crystallization. This coupling nucleation model is presented here which relates the number of contact-collision site in nucleation owing to collision rate and the interfacial energy. F2 in the expression of the classic contact nucleation rate is redefined as a power function with the physical properties of crystals and breakage propensity. The experiment results indicate that crystal breakage propensity has a significant influence on the nucleation rate. Finally, analysis of the contact nucleation kinetic model and comparison with experiments reveal that the new nucleation model results are in better agreement with experiments. This new nucleation model is confirmed to represent the time-dependent collision behavior. The parameters of model are strongly related to the physical properties of crystal and fluidization conditions.

Funder

Sichuan University of Science and Engineering

Publisher

Hindawi Limited

Subject

General Chemistry

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3