Investigation of Dynamic Responses and Vibration Serviceability of Temporary Grandstands by a 3 DOF Interaction Model due to Swaying Motion

Author:

Yuan Jian1,Yu Suhui1,Liu Cong2ORCID,Gao Chengqiang1,Wang Wei1,He Lin3,Fan Feng3

Affiliation:

1. Academy of Combat Support, Rocket Force University of Engineering, Xi’an 710025, China

2. School of Civil Engineering, Suzhou University of Science and Technology, Suzhou 215011, China

3. School of Civil Engineering, Harbin Institute of Technology, Harbin 150090, China

Abstract

Excessive vibration of temporary grandstand by the crowd has lateral rhythmic motions, which attracted increasing attention in the recent years. This paper focuses on experiments where a temporary grandstand occupied by 20 participants is oscillated by a shaking table with a series of random waves and the crowd-induced rhythmic swaying motions at lateral direction, respectively. The dynamic forces that were induced by participants who have swayed at 0.5–1.8 Hz are recorded by a tri-axial human biomechanics force plate. A new relationship between the annoyance rate and structural acceleration at logarithmic coordinate is investigated and proposed, and the swaying load model is given. Based on these experimental results, a simplified three-degree-of-freedom lumped dynamic model of the joint human–structure system is reinterpreted. Afterwards, combined with a feasible range of crowd/structural dynamic parameters, a series of interaction models are analyzed, the vibration dose value (VDV) of the structure is obtained and discussed, and the notable parameters for interaction model are predicted. The experimental results show that the lateral serviceability limit is 1.29 m/s1.75 and the upper boundary is 2.32 m/s1.75. The dynamic response of model indicated that the VDV of structure will be decreased with increasing the mass of static crowd and damping ratio of the dynamic crowd. The max response of the model is α ≤ 0.6, f2 = 1.8 Hz or α > 0.6, f2 = 1.5 Hz or f1 = 2.5–3.5 Hz. It may be used as a reference value in vibration safety and serviceability assessment of TDGs, to estimate realistically the vibration response on the occasions when the crowds are swaying.

Funder

Ministry of Science and Technology

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3