Limbal Stem Cell Deficiency: Current Treatment Options and Emerging Therapies

Author:

Haagdorens Michel123,Van Acker Sara Ilse1,Van Gerwen Veerle1,Ní Dhubhghaill Sorcha12,Koppen Carina12,Tassignon Marie-José12,Zakaria Nadia124

Affiliation:

1. Faculty of Medicine and Health Sciences, Department of Ophthalmology, Visual Optics and Visual Rehabilitation, University of Antwerp, Campus Drie Eiken, T building, T4-Ophthalmology, Universiteitsplein 1, 2610 Antwerp, Belgium

2. Department of Ophthalmology, Antwerp University Hospital, Dienst Oogheelkunde, Wilrijkstraat 10, 2650 Edegem, Belgium

3. Research Foundation-Flanders, Egmontstraat 5, 1000 Brussels, Belgium

4. Center for Cell Therapy and Regenerative Medicine, Antwerp University Hospital, CCRG-Oogheelkunde, Wilrijkstraat 10, 2650 Edegem, Belgium

Abstract

Severe ocular surface disease can result in limbal stem cell deficiency (LSCD), a condition leading to decreased visual acuity, photophobia, and ocular pain. To restore the ocular surface in advanced stem cell deficient corneas, an autologous or allogenic limbal stem cell transplantation is performed. In recent years, the risk of secondary LSCD due to removal of large limbal grafts has been significantly reduced by the optimization of cultivated limbal epithelial transplantation (CLET). Despite the great successes of CLET, there still is room for improvement as overall success rate is 70% and visual acuity often remains suboptimal after successful transplantation. Simple limbal epithelial transplantation reports higher success rates but has not been performed in as many patients yet. This review focuses on limbal epithelial stem cells and the pathophysiology of LSCD. State-of-the-art therapeutic management of LSCD is described, and new and evolving techniques in ocular surface regeneration are being discussed, in particular, advantages and disadvantages of alternative cell scaffolds and cell sources for cell based ocular surface reconstruction.

Funder

The Research Foundation-Flanders

Publisher

Hindawi Limited

Subject

Cell Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3