Groundwater Quality Assessment in a Karst Coastal Region of the West Aurunci Mountains (Central Italy)

Author:

Sappa Giuseppe1ORCID,Iacurto Silvia1ORCID,Ferranti Flavia1ORCID,De Filippi Francesco M.1ORCID

Affiliation:

1. Department of Civil, Building and Environmental Engineering (DICEA), Sapienza University of Rome, Rome 00184, Italy

Abstract

This paper presents the results of a groundwater quality assessment carried out in the karst coastal region of the West Aurunci Mountains (Central Italy). 55 spring and 18 well water samples, collected from 2016 to 2018, were analysed to study the main processes controlling the hydrogeochemical evolution and groundwater quality properties. In the study area, groundwater samples are mostly characterized by a Ca-HCO3 facies, indicating that the groundwater hydrogeochemical evolution is mainly controlled by the carbonate mineral dissolution/precipitation. The cationic and anionic concentrations confirm that groundwater samples belong to the order of Ca2+>Mg2+>Na+>K+ and HCO3>Cl>SO42, respectively. Well water samples show, over time, an increasing mineralization with respect to the spring water samples. In more detail, the enrichment of Ca2+, Na+, and Cl- in well water samples is mainly due to the dissolution of calcite, dolomite, and halite minerals and secondly to a probable ion exchange related to seawater intrusion. Seawater intrusion, probably affecting the chemical composition of well water samples, was studied using ionic ratios, graphical approaches, and specific indices, such as the BEX index. Results suggest that carbonate weathering, ion exchange, and seawater intrusion in this karst coastal region are the major factors controlling groundwater geochemistry. This study shows that groundwater quality assessment, based on hydrogeochemical investigation techniques, has been a useful tool to characterize and model carbonate aquifers in Central Italy, with the aim of achieving proper management and protection of these important water resources.

Publisher

Hindawi Limited

Subject

General Earth and Planetary Sciences

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3