RAMHU: A New Robust Lightweight Scheme for Mutual Users Authentication in Healthcare Applications

Author:

Al-Zubaidie Mishall12ORCID,Zhang Zhongwei2,Zhang Ji2

Affiliation:

1. Thi-Qar University, Nasiriyah 64001, Iraq

2. Faculty of Health, Engineering and Sciences, University of Southern Queensland, Toowoomba, QLD 4350, Australia

Abstract

Providing a mechanism to authenticate users in healthcare applications is an essential security requirement to prevent both external and internal attackers from penetrating patients’ identities and revealing their health data. Many schemes have been developed to provide authentication mechanisms to ensure that only legitimate users are authorised to connect, but these schemes still suffer from vulnerable security. Various attacks expose patients’ data for malicious tampering or destruction. Transferring health-related data and information between users and the health centre makes them exposed to penetration by adversaries as they may move through an insecure channel. In addition, previous mechanisms have suffered from the poor protection of users’ authentication information. To ensure the protection of patients’ information and data, we propose a scheme that authenticates users based on the information of both the device and the legitimate user. In this paper, we propose a Robust Authentication Model for Healthcare Users (RAMHU) that provides mutual authentication between the server and clients. This model utilizes an Elliptic Curve Integrated Encryption Scheme (ECIES) and PHOTON to achieve strong security and good overall performance. RAMHU relies on multiple-pseudonym, physical address, and one-time password mechanisms to authenticate legitimate users. Moreover, extensive informal and formal security analysis with the automated validation of Internet security protocols and applications (AVISPA) tool demonstrate that our model offers a high level of security in repelling a wide variety of possible attacks.

Publisher

Hindawi Limited

Subject

Computer Networks and Communications,Information Systems

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3