Adsorptive Removal of Alizarin Red S onto Sulfuric Acid-Modified Avocado Seeds: Kinetics, Equilibrium, and Thermodynamic Studies

Author:

Bharath Balji G.12ORCID,Senthil Kumar P.12ORCID

Affiliation:

1. Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam 603110, India

2. Centre of Excellence in Water Research (CEWAR), Sri SivasubramaniyaNadar College of Engineering, Kalavakkam 603110, India

Abstract

The present work evaluates the synthesis of a novel, inexpensive, and environmentally friendly chemically-treated avocado seed powder (CTASP) as an adsorbent in removing alizarin red S (ARS) from synthetic solution. By using a set of analytical techniques, including FTIR, XRD, EDX, RS, and SEM, the adsorbent was characterized for its physical and chemical properties. Batch study experiments were conducted to determine the effectiveness of the CTASP as an adsorbent. The maximum adsorption capacity of 67.08 mgg-1 was attained at optimum conditions of 3 gL-1 adsorbent dosage, pH 3, contact time of 30 min, and at temperature 303 K. After 30 minutes, the equilibrium was reached, and the experimental data was explained for isotherm, kinetic, and thermodynamic processes. The results indicated that pseudo-second-order kinetics and the Freundlich isotherm were the best fits for the data. The findings of the analysis of the thermodynamic parameters for the process showed that the system was an exothermic and spontaneous. According to the desorption studies, 0.1 M NaOH can be utilized as a separating reagent to desorb 90.53% of ARS that was adsorbed. Regeneration experiments were conducted to make the process more practical and affordable, and it was discovered that the CTASP adsorbent could be successfully regenerated up to four times. In comparison with other adsorbents, the current low-cost adsorbent had the exceptional regenerative capability and delivered multilayer adsorption capacity. Additionally, it has been demonstrated that the CTASP is an effective material for the detoxification of ARS dye from wastewater.

Publisher

Hindawi Limited

Subject

Surfaces and Interfaces,General Chemical Engineering,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3