Study on the Mechanical Properties and Thermal Conductivity of Cotton Stalk Fiber Heat-Insulating Shotcrete

Author:

Liu Guangcheng12ORCID,Yao Weijing12,Pang Jianyong12

Affiliation:

1. State Key Laboratory of Mining Response and Disaster Prevention and Control in Deep Coal Mines, Anhui University of Science and Technology, Huainan 232001, China

2. School of Civil Engineering and Architecture, Anhui University of Science and Technology, Huainan 232001, China

Abstract

In this study, heat-insulating shotcrete with excellent performance was developed to effectively reduce the thermal conductivity and meet the strength requirements of shotcrete in high ground temperature roadways. Ceramsite and pottery sand were used to replace 5% and 10% of sand and stone, respectively. The shotcrete was composed of cotton rod fiber treated with polyvinyl alcohol solution (SH adhesive) and other materials in a certain mix ratio. The working, mechanical, and heat insulation properties of the shotcrete were investigated by compressive strength, splitting tensile, thermal conductivity, electron microscope scanning, and X-ray diffraction tests. The results showed that the optimum content of the cotton stalk fiber was 2 kg/m3. The compressive strength and the splitting tensile properties were excellent, and the strength attained the maximum value. The performance of shotcrete increased with an increase in the cotton stalk fiber content. The thermal conductivity curve decreased smoothly when the cotton stalk fiber content exceeded 2 kg/m3. Furthermore, when the cotton stalk fiber content was 0–2 kg/m3, the internal cotton stalk fiber was tightly wrapped by the hydrate, and the mechanical properties were enhanced. Moreover, when the cotton stalk fiber content was 2-3 kg/m3, a clustering phenomenon occurred, and the compressive and tensile strengths were reduced. The hydration reaction of the cement mixed with cotton stalk fiber was normal, and the reinforced reticulated porous structure was formed with ceramsite in the concrete matrix, improving the strength of the concrete and reducing the thermal conductivity.

Funder

Anhui University of Science and Technology

Publisher

Hindawi Limited

Subject

General Engineering,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3