A Live Cell Imaging Microfluidic Model for Studying Extravasation of Bloodborne Bacterial Pathogens

Author:

Bergevin Michele d.123ORCID,Boczula Anna E.3ORCID,Caruso Laura-lee12ORCID,Persson Henrik12ORCID,Simmons Craig A.123ORCID,Moriarty Tara J.34ORCID

Affiliation:

1. Department of Mechanical and Industrial Engineering, and Institute Biomedical Engineering, University of Toronto, 5 King’s College Road, Toronto, ON, M5S 3G8, Canada

2. Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, 661 University Avenue, 14th Floor, Toronto, ON, M5G 1M1, Canada

3. Faculty of Dentistry, University of Toronto, 124 Edward Street, Toronto, ON, M5G 1G6, Canada

4. Faculty of Medicine, Department of Laboratory Medicine and Pathobiology, University of Toronto, Canada

Abstract

Bacteria that migrate (extravasate) out of the bloodstream during vascular dissemination can cause secondary infections in many tissues and organs, including the brain, heart, liver, joints, and bone with clinically serious and sometimes fatal outcomes. The mechanisms by which bacteria extravasate through endothelial barriers in the face of blood flow-induced shear stress are poorly understood, in part because individual bacteria are rarely observed traversing endothelia in vivo, and in vitro model systems inadequately mimic the vascular environment. To enable the study of bacterial extravasation mechanisms, we developed a transmembrane microfluidics device mimicking human blood vessels. Fast, quantitative, three-dimensional live cell imaging in this system permitted single-cell resolution measurement of the Lyme disease bacterium Borrelia burgdorferi transmigrating through monolayers of primary human endothelial cells under physiological shear stress. This cost-effective, flexible method was 10,000 times more sensitive than conventional plate reader-based methods for measuring transendothelial migration. Validation studies confirmed that B. burgdorferi transmigrate actively and strikingly do so at similar rates under static and physiological flow conditions. This method has significant potential for future studies of B. burgdorferi extravasation mechanisms, as well as the transendothelial migration mechanisms of other disseminating bloodborne pathogens.

Funder

Canadian Institutes of Health Research

Publisher

Hindawi Limited

Subject

Virology,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3