Experimental Study on Cracking Behaviour and Strength Properties of an Expansive Soil under Cyclic Wetting and Drying

Author:

Li Tao1ORCID,He Yanqing1,Liu Guokun1,Li Binru1,Hou Rui1

Affiliation:

1. School of Mechanics and Civil Engineering, China University of Mining and Technology, Beijing 100083, China

Abstract

Expansive soil is characterized by its unique structural morphology and drastic volume change. With infrastructure increasingly constructed in expansive soil areas, engineering problems caused by the properties of expansive soils have attracted more attention. Cyclic wetting-drying and shear testing were accordingly conducted on an expansive soil from Chengdu area in China. Crack development and shear strength change were analyzed using the Mohr–Coulomb equation for shear strength by fitting the experimental data. The results show the following: (1) With the increase in wetting-drying cycles, the crack ratio increases, the shear strength decreases, and the shear strength parameters gradually decrease at the same rate of change. The applied vertical load reduces the weakening effect of the wetting-drying cycles on the soil structure and strength by restraining the expansion and contraction deformation. (2) By analyzing the number of wetting-drying cycles and the crack images, the crack development (length, direction, etc.) of the expansive soil can be predicted and described. (3) There is a specific linear correlation between the crack ratio and strength that approached a limit value with ongoing wetting-drying cycles. The strength of the expansive soil can therefore be obtained based on crack development, improving the ability of designers to account for the behaviour of expansive soils.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3