Affiliation:
1. Key Laboratory of Metallogenic Prediction of Nonferrous Metals and Geological Environment Monitoring (Central South University), Ministry of Education, Changsha 410083, China
2. School of Geosciences and Info-Physics, Central South University, Changsha 410083, China
3. Guangxi Zhuang Autonomous Region Geological Environment Monitoring Station, Baise 533000, China
Abstract
The effectiveness and improvement mechanism of graphite nanoparticles (GN) in strength properties and microstructure characteristics of regional laterite were analysed in this study. Dry density was also taken into consideration, and the effects of graphite nanoparticle (GN) content and dry density were mainly addressed. Triaxial tests, consolidation tests, and penetration tests were used to analyse the effectiveness of different dry densities and graphite nanoparticle mass ratios on the properties of laterite; microscopic methods such as scanning electron microscopy (SEM) tests were used to analyse the improvement mechanism. The results show that the increase in dry density can make the laterite more compact. The large specific surface area and nanoeffects of the graphite nanoparticles (GN) induce the attraction between soil particles after mixing, both of which make the laterite’s shear strength; compression index and impermeability have been enhanced to varying degrees. The microscopic tests showed that, as the content of graphite nanoparticles (GN) continues to increase, when it exceeds 1.0%, the attraction between soil particles increases and coarse particles are formed, which leads to the increase of the pores of the soil. In addition, the graphite nanoparticles have a certain degree of lubricity, a high amount of graphite nanoparticles enters the laterite soil layer, increasing the distance and gap between the layers, making it easy to separate the coarse particles from the coarse particles, and the strength increase is reduced. However, it is still stronger than that of the plain laterite.
Funder
National Natural Science Foundation of China
Subject
General Engineering,General Materials Science
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献