Affiliation:
1. Mathematics Department, Faculty of Science, Hashemite University, Zarqa 150459, Jordan
2. Mathematics Department, Faculty of Science, University of Jordan, Amman 11942, Jordan
Abstract
We provide a process to extend any bipartite diametrical graph of diameter 4 to an -graph of the same diameter and partite sets. For a bipartite diametrical graph of diameter 4 and partite sets and , where , we prove that is a sharp upper bound of and construct an -graph in which this upper bound is attained, this graph can be viewed as a generalization of the Rhombic Dodecahedron. Then we show that for any , the graph is the unique (up to isomorphism) bipartite diametrical graph of diameter 4 and partite sets of cardinalities and , and hence in particular, for , the graph which is just the Rhombic Dodecahedron is the unique (up to isomorphism) bipartite diametrical graph of such a diameter and cardinalities of partite sets. Thus we complete a characterization of -graphs of diameter 4 and cardinality of the smaller partite set not exceeding 6. We prove that the neighborhoods of vertices of the larger partite set of form a matroid whose basis graph is the hypercube . We prove that any -graph of diameter 4 is bipartite self complementary, thus in particular . Finally, we study some additional properties of concerning the order of its automorphism group, girth, domination number, and when being Eulerian.
Subject
Mathematics (miscellaneous)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. On k-pairable regular graphs;Discrete Mathematics;2010-12