A Bayesian Prediction Spatial Model for Confirmed Dengue Cases in the State of Chiapas, Mexico

Author:

Solís-Navarro Manuel1ORCID,Vargas-De-León Cruz123ORCID,Gúzman-Martínez María2ORCID,Corzo-Gómez Josselin4ORCID

Affiliation:

1. Sección de Estudios de Posgrado, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México, Mexico

2. Facultad de Matemáticas, UAGro, Ciudad Universitaria s/n Chilpancingo, Chilpancingo, Guerrero, Mexico

3. División de Investigación, Hospital Juárez de México, Ciudad de México, Mexico

4. Escuela de Ciencias Químicas Sede Ocozocoautla de Espinosa, Universidad Autónoma de Chiapas, Tuxtla Gutiérrez, Mexico

Abstract

Dengue is one of the major health problems in the state of Chiapas. Consequently, spatial information on the distribution of the disease can optimize directed control strategies. Therefore, this study aimed to develop and validate a simple Bayesian prediction spatial model for the state of Chiapas, Mexico. This is an ecological study that uses data from a range of sources. Dengue cases occurred from January to August 2019. The data analysis used the spatial correlation of dengue cases (DCs), which was calculated with the Moran index statistic, and a generalized linear spatial model (GLSM) within a Bayesian framework, which was considered to model the spatial distribution of DCs in the state of Chiapas. We selected the climatological, geographic, and sociodemographic variables related to the study area. A prediction of the model on Chiapas maps was carried out based on the places where the cases were registered. We find a spatial correlation of 0.115 p  value = 0.001 between neighboring municipalities using the Moran index. The variables that have an effect on the number of confirmed cases of dengue are the maximum temperature ( Coef = 0.110 ; 95 % CrI : 0.076 0.215 ), rainfall ( Coef = 0.013 ; 95 % CrI : 0.008 0.028 ), and altitude ( Coef = 0.00045 ; 95 % CrI : 0.00002 0.00174 ) of each municipality. The predicting power is notably better in regions that have a greater number of municipalities where DCs are registered. The model shows the importance of considering these variables to prevent future DCs in vulnerable areas.

Publisher

Hindawi Limited

Subject

General Medicine,Microbiology,Parasitology

Reference47 articles.

1. Epidemiological update: Dengue. PAHO/WHO;PAHO/WHO,2020

2. Tardy manifestations of serious dengue in patients from the province of Camagüey;A. E. Arredondo Bruce;Revista Electrónica Dr. Zoilo E. Marinello Vidaurreta,2016

3. El dengue en el mundo-dengue-CDC;CDC,2019

4. Spatial and temporal patterns of dengue incidence in northeastern Thailand 2006–2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3