Image Recognition of Pediatric Pneumonia Based on Fusion of Texture Features and Depth Features

Author:

Wang Hao-Nan1,Zheng Li-Xin1ORCID,Pan Shu-Wan1,Yan Tan2,Su Qiu-Ling2

Affiliation:

1. College of Engineering, Huaqiao University, Quanzhou 362021, China

2. The 910th Hospital of the Joint Support Force of the Chinese People’s Liberation Army, Quanzhou 362008, China

Abstract

Pneumonia is one of the diseases that seriously endangers human health, and it is also the leading cause of death of children under the age of five in China. The most commonly used imaging examination method for radiologists is mainly based on chest X-ray images. Still, imaging errors often result during imaging examinations due to objective factors such as visual fatigue and lack of experience. Therefore, this paper proposes a feature fusion model, FC-VGG, based on the fusion of texture features (local binary pattern LBP and directional gradient histogram HOG) and depth features. The model improves model performance by adding detailed information in texture features to the convolutional neural network while making the model more suitable for clinical use. We input the X-ray image with texture features into the modified VGG16 model, C-VGG, and then add the Add fusion method to C-VGG for feature fusion so that FC-VGG is obtained, so FC-VGG has texture features detailed information and abstract information of deep features. Through experiments, our model has achieved 92.19% accuracy in recognizing children’s pneumonia images, 93.44% average precision, 92.19% average recall, and 92.81% average F1 coefficient, and the model performance exceeds existing deep learning models and traditional feature recognition algorithms.

Funder

High-Level Talent Innovation and Entrepreneurship Project of Quanzhou

Publisher

Hindawi Limited

Subject

Applied Mathematics,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,Modeling and Simulation,General Medicine

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3