Fracture Initiation and Propagation in the Hot Dry Rock Subject to the Cyclic Injection Hydraulic Fracturing Treatment

Author:

Yuan Yilong12ORCID,Wang Wei23ORCID,Tang Jiawei1ORCID,Guo Qiang1ORCID,Liu Yulong24ORCID

Affiliation:

1. State Key Laboratory of Water Resource Protection and Utilization in Coal Mining, Beijing 102209, China

2. Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, China

3. Sichuan Institute of Geological Engineering Investigation Group Co. Ltd., Chengdu 610072, China

4. School of Petroleum Engineering, Yangtze University, National Engineering Research Center for Oil & Gas Drilling and Completion Technology, Wuhan 430100, China

Abstract

Cyclic injection hydraulic fracturing is a promising way for the geothermal energy exploitation by reactivating the fractures in geothermal reservoir. However, fracture initiation and growth induced by cyclic injection schemes have been inadequately studied for hot dry rock (HDR), and the cyclic injection fracturing optimized often by experience. For this reason, the initiation and propagation of hydraulic fractures in the HDR under different cyclic injection methods were determined by experiment research for hydraulic fracturing. The results show that the cyclic frequency and injection rate play different roles in the stimulation of HDR. The cyclic injection with low frequency-low pressure can create more branched fractures, forming a short but complex hydraulic fracture network. However, when high flow-high frequency injection method is subjected, the branch fractures formed are significantly reduced, but each branch fracture can be fully expanded. To fully exploit the advantages of different injection methods, a numerical model that contains a fracture network was established with PFC software, and an alternating cyclic injection scheme with synergistic control of the cyclic frequency and injection rate was proposed. The comparison results indicated that the alternating cyclic injection method can effectively improve the fracturing effect in the HDR. The stimulation area of the alternating cyclic injection method is about 2.3 times and 2.7 times that of the low flow-low frequency and high flow-high frequency injection methods, respectively. The method presented here can be adopted to optimize the fracture growth regime and provide a scientific basis for EGS hydraulic fracturing design.

Funder

Jilin Province Science and Technology Development Plan Project

Publisher

Hindawi Limited

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3