Fine Particulate Matter Exposure and Health Impacts from Indoor Activities

Author:

Bhoonah Rachna12ORCID,Maury-Micolier Alice3ORCID,Jolliet Olivier45ORCID,Fantke Peter4ORCID

Affiliation:

1. Mines Paris-PSL, CES-Center for Energy Efficiency of Systems, 60 Bd St Michel, 75006 Paris, France

2. UMR ECOSYS, INRAE, AgroParisTech, Université Paris-Saclay, 91120 Palaiseau, France

3. Octopus Lab, 237 rue du Ballon, 59110 La Madeleine, France

4. Quantitative Sustainability Assessment, Department of Environmental and Resource Engineering, Technical University of Denmark, Bygningstorvet 115, 2800 Kongens Lyngby, Denmark

5. Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA

Abstract

Exposure to fine particulate matter (PM2.5) is an important contributor to global human disease burden, particularly indoors where people spend the majority of their time and exposure is highest. We propose a framework linking indoor PM2.5 emissions from human activities to exposure and health impacts, expressed in Disability-Adjusted Life Years (DALY). Derived dynamic indoor PM2.5 concentrations—capturing temporal variations through different window-opening scenarios and air renewal rates—are used to estimate uncertainty for a parametric model (up to a factor of 114). Intake fractions (fraction of emitted substance taken in (μgintake/μgemitted)), effect factors (μDALY/μgintake), related impact characterisation factors (health impact per unit mass emitted (μDALY/μgemitted)), and impact scores (health impact per hour activity (μDALY/hactivity)) are provided for 19 one-hour indoor activities and can be flexibly scaled to real activity durations. Indoor concentrations exceeded recommended World Health Organization (WHO) limits for all activities at low ventilation rates. Per person, 98 to 119 μDALY/hactivity (52 to 63 minuteslost/hactivity) was associated with traditional fuel cook stoves, with high air renewal rates (3 and 14 h-1). The burning of candles, at low air renewal rates of 0.2 to 0.6 h-1, results in 7 to 11 μDALY/hactivity (4 to 11 minuteslost/hactivity). Derived impact scores and characterisation factors serve as a starting point for integrating indoor PM2.5 emissions and exposure into life cycle impact and public health assessments.

Funder

USEtox International Centre

Publisher

Hindawi Limited

Subject

Public Health, Environmental and Occupational Health,Building and Construction,Environmental Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3