Observer-Based Finite-Time Sliding-Mode Control of Robotic Manipulator with Flexible Joint Using Partial States

Author:

Wang Yang1ORCID,Guan Yan1ORCID,Li Huanyun1ORCID

Affiliation:

1. Xi’an Key Laboratory of Human-Machine Integration and Control Technology for Intelligent Rehabilitation, Xijing University, Xi’an 710123, China

Abstract

This paper addresses the control problem of the flexible joint manipulator (FJM) with unmeasurable system states and mismatched uncertainties. First, the control system is transformed as a matched uncertain system with unmeasurable states based on differentiation method. Then, the uncertainties and unmeasurable states are estimated by designing a fixed-time observer (FTO). Based on the integral sliding-mode control (SMC), the bi-limit homogeneity technique and the estimation of FTO, a finite-time SMC is proposed for FJM. Compared with the existing finite-time SMC method for FJM, the most attractive feature of the proposed method is that not only the finite-time convergence is guaranteed but also the two angular velocity sensors for rotation angles of link and motor are simplified. Moreover, the proposed SMC can suppress the mismatched and matched uncertainties by using chattering-free control input. The fixed-time stability of FTO and finite-time stability of proposed controller are proved. Finally, the efficiency of proposed scheme is shown by the numerical simulation.

Funder

Natural Science Basic Research Program of Shaanxi Province

Publisher

Hindawi Limited

Subject

Artificial Intelligence,Human-Computer Interaction,Theoretical Computer Science,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3