Effect of Physically Realistic Potential Energy Form on Spatial Pattern Complexity in a Collective Motion Model

Author:

Marcus Austin M.12ORCID,Sayama Hiroki12ORCID

Affiliation:

1. Systems Science and Industrial Engineering Department, Binghamton University (State University of New York), Binghamton, NY 13902, USA

2. Center for Collective Dynamics of Complex Systems (CoCo), Binghamton University (State University of New York), Binghamton, NY 13902, USA

Abstract

Collective motion models most often use self-propelled particles, which are known to produce organized spatial patterns via their collective interactions. However, there is less work considering the possible organized spatial patterns achievable by non-self-propelled particles (nondriven), i.e., those obeying energy and momentum conservation. Moreover, it is not known how the potential energy interaction between the particles affects the complexity of the patterns. To address this, in this paper, a collective motion model with a pairwise potential energy function that conserved the total energy and momentum of the particles was implemented. The potential energy function was derived by generalizing the Lennard–Jones potential to reduce to gravity-like and billiard-ball-like potentials at the extremes of its parameter range. The particle model was simulated under a number of parameterizations of this generalized potential, and the average complexity of the spatial pattern produced by each was computed. Complexity was measured by tracking the information needed to describe the particle system at different scales (the complexity profile). It was found that the spatial patterns of the particles were the most complex around a specific ratio in the parameters. This parameter ratio described a characteristic shape of the potential energy function that is capable of producing complex spatial patterns. It is suggested that the characteristic shape of the potential energy produces complex behavior by balancing the likelihood for particles to bond. Furthermore, these results demonstrate that complex spatial patterns are possible even in an isolated system.

Publisher

Hindawi Limited

Subject

Multidisciplinary,General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3