A Straightforward Convergence Method for ICCG Simulation of Multiloop and Time-Stepping FE Model of Synchronous Generators with Simultaneous AC and Rectified DC Connections

Author:

Wang Shanming1ORCID,Huang Ziguo1,Mu Shujun1,Wang Xiangheng1

Affiliation:

1. State Key Laboratory of Control and Simulation of Power System and Generation Equipments, Department of Electrical Engineering, Tsinghua University, Beijing 100084, China

Abstract

Now electric machines integrate with power electronics to form inseparable systems in lots of applications for high performance. For such systems, two kinds of nonlinearities, the magnetic nonlinearity of iron core and the circuit nonlinearity caused by power electronics devices, coexist at the same time, which makes simulation time-consuming. In this paper, the multiloop model combined with FE model of AC-DC synchronous generators, as one example of electric machine with power electronics system, is set up. FE method is applied for magnetic nonlinearity and variable-step variable-topology simulation method is applied for circuit nonlinearity. In order to improve the simulation speed, the incomplete Cholesky conjugate gradient (ICCG) method is used to solve the state equation. However, when power electronics device switches off, the convergence difficulty occurs. So a straightforward approach to achieve convergence of simulation is proposed. At last, the simulation results are compared with the experiments.

Funder

Research Project of Tsinghua University

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3