Verification of Fracture Reorientation and Analysis of Influence Factors in Multiple Fracturing Treatment

Author:

Lu Mingjing1234ORCID,Su Yuliang1,Gutierrez Marte4,Zhan Yaohua5,Chen Kai2,Zheng Bintao2

Affiliation:

1. China University of Petroleum (East China), China

2. Petroleum Engineering Technology Research Institute of Shengli Oilfield, SINOPEC, China

3. Postdoctoral Scientific Research Working Station of Shengli Oilfield, SINOPEC, China

4. Colorado School of Mines, USA

5. CNOOC, Shenzhen, China

Abstract

A fracture will be initiated and propagated along the direction of maximum horizontal stress in fracturing treatment; however, in refracturing stimulation, the new fracture may be initiated and propagated along a different direction from the initial one. This is defined as a fracture reorientation. It is difficult to predict fracture reorientation due to the variation of formation properties after long-term production. To verify the existence of fracture reorientation and analyze its influencing factors in multiple fracturing treatment, experimental and numerical simulations are presented in this paper. Firstly, multiple fracturing stimulation is carried out with a self-assembled large true triaxial apparatus, and the fracture reorientation is successfully induced by changing the injection pressure and initial stresses in multiple fracturing processes. Then, numerical coupled hydromechanical modeling of the actual field production and injection well pattern is performed. In particular, the stress reversal region, which indicates the distance of fracture reorientation, and the factors that influence the reorientation are analyzed. The laboratory experiment and numerical simulation results show that the fracture reoriented angle obtained can be perpendicular to the initial fracture. Stress field and formation pressure are the two main factors that influence the fracture reorientation. With higher pressure differences and lower initial horizontal stress differences, the area in which it is possible to initiate reoriented fracture will be larger. The fractures of wells in the early production stage are hard to reorient due to the high formation and borehole pressure difference, and the fracture reorientation area will be expanded until the pressure difference is low to a certain value. This research result can guide oilfield stimulation treatments.

Funder

Major National Science and Technology Project

Publisher

Hindawi Limited

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3