Macrophage-Derived Exosomes in TLR9-/- Mice Ameliorate Sepsis-Induced Mitochondrial Oxidative Stress and Apoptosis in Cardiomyocytes

Author:

Li Xiang1ORCID,Luo Junyu1,Li Yanmei2,Jia Lu2,Li Yuejin3,Ye Shili4,Liu Lanlan5,Yu Yanxuan5,Lu Yonggang6,Luan Yunpeng15ORCID

Affiliation:

1. The First Affiliated Hospital of Yunnan University of Traditional Chinese Medicine, Kunming 650021, China

2. Department of Life Technology Teaching and Research, College of Life Sciences, Southwest Forestry University, Kunming 650224, China

3. The General Surgery Department, The First People’s Hospital of Yunnan Province, Kunming 650000, China

4. Faculty of Mathematics and Physics, Southwest Forestry University, Kunming 650224, China

5. Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming 650224, China

6. Clinical Laboratory, Hebei General Hospital, Shijiazhuang 050000, China

Abstract

Objective. To explore the mechanisms of TLR9 from macrophages on mitochondrial apoptosis in cardiomyocytes at early stage of sepsis. Methods. The in vivo and in vitro sepsis mice were bone marrow transplantation (BMT) with wild type (WT) or (toll-like receptor 9) TLR9 knockout (-/- or KO) myeloid cells and then constructed by cecum ligation and puncture (CLP) as vivo experiment and cardiomyocytes cocultured with WT or TLR9-deficient macrophages treated with LPS as vitro experiment, respectively. Sepsis model were performed by CLP. The expression levels of exosome, PI3K/AKT, and ERK1/2, inflammatory factors, and apoptotic proteins were tested by western blot in vivo. Besides, associated apoptotic proteins and JC-1 fluorescence assay were tested in vitro. Results. The expressions of p-PI3K, p-AKT, exosome markers (CD9, CD63, and TSG101), p-ERK1/2, TNF-α, IFN-γ, IL-1β, and cleaved-caspase-3/-9 were significantly increased in septic mice vs. control mice, and these proteins were declined dramatically in TLR9-/- BMT mice vs. WT BMT mice in sepsis mice models. Meanwhile, the protein expression of cytochrome C, cleaved-caspase-3, and cleaved-caspase-9 increased significantly in primary mouse myocardial cells cocultured with TLR9-/- or WT macrophages stimulated with LPS, and these mitochondrial apoptotic proteins as well as the green 5,5',6,6'-tetrachloro-1,1',3,3'- tetraethylbenzimidazolcarbocyanine iodide (JC-1) fluorescence were dramatically lower in LPS-stimulated cardiomyocytes cocultured with TLR9-/- than with WT macrophages. Conclusion. TLR9-/- in macrophages suppressed the inflammatory reaction as well as the exosome secretion and resulted in the inhibition of apoptosis and oxidative stress in sepsis-induced cardiomyopathy.

Funder

Joint Specific Project of Basic Research of TCM Application of Yunnan Province

Publisher

Hindawi Limited

Subject

Cell Biology,Aging,General Medicine,Biochemistry

Reference40 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3