Affiliation:
1. Molecular Chemistry and Natural Substances Laboratory, Faculty of Science, Moulay Ismail University, Meknes, Morocco
2. MEM, ESTM, Moulay Ismail University, Meknes, Morocco
Abstract
To search for newer and potent antileishmanial drugs, a series of 36 compounds of 5-(5-nitroheteroaryl-2-yl)-1,3,4-thiadiazole derivatives were subjected to a quantitative structure-activity relationship (QSAR) analysis for studying, interpreting, and predicting activities and designing new compounds using several statistical tools. The multiple linear regression (MLR), nonlinear regression (RNLM), and artificial neural network (ANN) models were developed using 30 molecules having pIC50 ranging from 3.155 to 5.046. The best generated MLR, RNLM, and ANN models show conventional correlation coefficients R of 0.750, 0.782, and 0.967 as well as their leave-one-out cross-validation correlation coefficients RCV of 0.722, 0.744, and 0.720, respectively. The predictive ability of those models was evaluated by the external validation using a test set of 6 molecules with predicted correlation coefficients Rtest of 0.840, 0.850, and 0.802, respectively. The applicability domains of MLR and MNLR transparent models were investigated using William’s plot to detect outliers and outsides compounds. We expect that this study would be of great help in lead optimization for early drug discovery of new similar compounds.
Subject
Physical and Theoretical Chemistry
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献