Modeling Hypertension as a Contributor to Retinal Hemorrhaging from Abusive Head Trauma

Author:

Umstead Christopher1ORCID,Barhorst Alan1ORCID,Kasemsri Thivakorn2,Mitchell Kelly3

Affiliation:

1. Texas Tech University, Department of Mechanical Engineering, Box 41021, Lubbock, TX 79430-9406, USA

2. Texas Tech University Health Sciences Center, Department of Pediatrics, Division of Pediatric Critical Care, 3601 4th Street, Lubbock, TX 79430-9406, USA

3. Texas Tech University Health Sciences Center, Department of Ophthalmology & Visual Sciences, 3601 4th Street, Lubbock, TX 79430-9406, USA

Abstract

Retinal hemorrhaging (RH) is indicative and prevalent in abusive head trauma (AHT)—yet the direct cause of the RH from AHT is unknown. Our hypothesis is that RH in AHT is the combination of shaking forces and hypertension. This combination of effects explains why RH is not normally observed in common childhood accidents but is nearly exclusively observed in AHT. An experimental model using porcine eyes was designed to ascertain the required pressure change for sudden RH and, via a computer model, the subsequent stress increase in blood vessels. The porcine eyes were cannulated via the maxillary artery and pressurized until perfusion and RH were observed. Fluid was injected into the head with a computer-controlled continuous flow syringe pump; video of the fundus was recorded during perfusion; and the pressure of the fluid entering the eye was recorded as well. A computer model was created in COMSOL to simulate loading from hypertension, shaking, and the combination of the forces. This model was validated via experimental data collected from the porcine model. It was found that hypertension or shaking alone did not cause an increase in stress required to cause RH. But when the loading of shaking and hypertension was combined, as would occur in AHT, the stress increases were greater than those extrapolated from the porcine model and would cause RH.

Publisher

Hindawi Limited

Subject

Health Informatics,Biomedical Engineering,Surgery,Biotechnology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3