A Graphical Approach for Hybrid Simulation of 3D Diffusion Bio-Models via Coloured Hybrid Petri Nets

Author:

Ismail Amr1ORCID,Herajy Mostafa1ORCID,Atlam Elsayed23ORCID,Heiner Monika4

Affiliation:

1. Department of Mathematics and Computer Science, Faculty of Science, Port Said University, 42521-Port Said, Egypt

2. Faculty of Computer Science and Engineering, Taibah University, Yanbu, Saudi Arabia

3. Mathematics Department, Faculty of Science, Tanta University, Tanta, Egypt

4. Computer Science Institute, Brandenburg University of Technology, Postbox 101344, 03013 Cottbus, Germany

Abstract

Three-dimensional modelling of biological systems is imperative to study the behaviour of dynamic systems that require the analysis of how their components interact in space. However, there are only a few formal tools that offer a convenient modelling of such systems. The traditional approach to construct and simulate 3D models is to build a system of partial differential equations (PDEs). Although this approach may be computationally efficient and has been employed by many researchers over the years, it is not always intuitive since it does not provide a visual depiction of the modelled systems. Indeed, a visual modelling can help to conceive a mental image which eventually contributes to the understanding of the problem under study. Coloured Hybrid Petri Nets (HPNC) are a high-level representation of classical Petri nets that offer hybrid as well as spatial modelling of biological systems. In addition to their graphical representations, HPNC models are also scalable. This paper shows how HPNC can be used to construct and simulate systems that require three-dimensional as well as hybrid (stochastic/continuous) modelling. We use calcium diffusion in three dimensions to illustrate our main ideas. More specifically, we show that creating 3D models using HPNC can yield more flexible models as the structure can be easily scaled up and down by just modifying a few parameters. This advantage of convenient model configuration facilitates the design of different experiments without the need to alter the model structure.

Publisher

Hindawi Limited

Subject

Computer Science Applications,General Engineering,Modeling and Simulation

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3