On the Use of the Analogue Transformation Acoustics in Aeroacoustics

Author:

Iemma Umberto1ORCID,Palma Giorgio1ORCID

Affiliation:

1. Department of Engineering, Roma Tre University, Via Vito Volterra, No. 62, 00146 Rome, Italy

Abstract

The objective of the paper is the assessment of the Analogue Transformation Acoustics (ATA) in the design of acoustic metamaterial for aeronautical applications. The work focuses on the consistency of the background flow resulting from the application of the ATA with the equations governing the potential aerodynamics. Indeed, in case of acoustic perturbations propagating within moving media, the convective terms in the governing equations are responsible for the failure of formal invariance under the action of conformal mappings. The ATA approach overcomes this limitation, introducing the possibility of handling the convective form of the wave equation in a straightforward and elegant way. It is based on the concept of analogue space-time and fully relies on the analytical tools of Lorentzian differential geometry. The present paper analyses the relationship between the analogue velocity field with a realistic potential flow. The method is validated through numerical simulations using two widely assessed acoustic cloaking problems. The preliminary results obtained show that the use of numerical, quasi-conformal mappings can lead to transformed streamlines negligibly deviating from those of the potential velocity field satisfying the fluid-dynamic conservation laws, but with incompatible intensity of the local velocity.

Funder

European Commission

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3