Affiliation:
1. School of Computer Engineering, Nanjing Institute of Technology, Nanjing, Jiangsu 211167, China
2. School of Information Science and Technology, Huizhou University, Huizhou, Guangdong 516007, China
Abstract
As node energy of wireless sensor networks (WSN) is limited and cannot be supplemented after exhaustion, clustering algorithm is frequently taken as an effective method to prolong the lifetime of WSN. However, the existing clustering algorithms have some drawbacks, either consuming excessive energy as a result of exchanging too much controlling information between nodes, or lacking a comprehensive perspective in terms of the balance among several conflicting objectives. In order to overcome these shortcomings, a novel combinatorial optimization-based clustering algorithm (COCA) for WSN is proposed in this paper. Different from the above mentioned algorithms which take clustering as a continuous optimization problem, COCA solves the clustering problem from the perspective of combinatorial optimization. Firstly, the clustering of WSN is abstracted into a combinatorial optimization problem. Then, the binary particle coding scheme of cluster head is proposed, which is based on the corresponding relationship between nodes and particle position vectors, and the fitness function is designed according to the parameters used in the process of cluster formation. Finally, the binary particle swarm optimization algorithm is applied to implement the clustering. COCA is validated under different scenarios compared with three other clustering algorithms. The simulation results show that COCA has better performance than its comparable algorithms.
Funder
Nanjing Institute of Technology
Subject
General Engineering,General Mathematics
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献