Energy Harvesting and Information Transmission Mode Design for Cooperative EH-Abled IoT Applications in beyond 5G Networks

Author:

Gao Hongyuan1ORCID,Zhang Shibo1ORCID,Su Yumeng1ORCID,Diao Ming1

Affiliation:

1. College of Information and Communication Engineering, Harbin Engineering University, Harbin 150001, China

Abstract

Energy harvesting (EH) technology is considered to be a promising approach to provide enough energy for energy-constrained Internet of Things (IoT). In this paper, we propose an energy harvesting and information transmission mode for the spectrum sharing system with cooperative EH-abled IoT applications in beyond 5G networks. Different from most existing IoT spectrum-sharing research studies, in our system, both primary user (PU) and IoT devices (IDs) collect energy for their information transmission. In addition, for all IDs, they should realize two communication functions: working as relays to help the information transfer process of PU and completing their own information transmission. We analytically derive exact expressions for the throughput of the primary system and IoT system and then formulate two objective functions. It is easy to see that power splitting ratio, dynamic EH ratio, power sharing ratio, and relay selection should be optimized to get the best performance for different communication circumstances. Actually, it is a hybrid NP-hard problem to optimize these parameters and traditional algorithms cannot solve it well. Therefore, a novel algorithm-quantum whale optimization algorithm (QWOA) is proposed to obtain the best performance. Simulation results show the good performance of QWOA in different simulation scenarios.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3