Glass Transition Behavior of the Quaternary Ammonium-Type Ionic Liquid: N,N-Diethyl-N-methyl-N-(2-methoxyethyl)ammonium Bromide-H2O Mixtures

Author:

Yoshimura Yukihiro1,Hatano Naohiro1,Imai Yusuke2,Abe Hiroshi2,Shimada Osamu3,Hanasaki Tomonori3

Affiliation:

1. Department of Applied Chemistry, National Defense Academy, Yokosuka, Kanagawa 239-8686, Japan

2. Department of Materials Science and Engineering, National Defense Academy, Yokosuka, Kanagawa 239-8686, Japan

3. Department of Applied Chemistry, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan

Abstract

By a simple differential thermal analysis (DTA) system, the concentration dependence of the glass transition temperatures (Tgs) for the quaternary ammonium-type ionic liquid, N,N-diethyl-N-methyl-N-(2-methoxyethyl)ammonium bromide [DEME][Br] and H2O mixtures, after quick precooling was measured as a function of water concentration x (mol% H2O). We compared the results with the previous results of [DEME][I]-H2O and [DEME][BF4]-H2O mixtures in which a double-glass transition behavior was observed. Remarkably, the [DEME][Br]-H2O mixtures basically show one-Tg behavior and the Tg decreases monotonically with increasing H2O content up to around x=91.5. But it suddenly jumps to higher Tg value at a specific x=~92. At this very limited point, two Tgs (Tg1,Tg2) which we might consider as a transition state from the structure belonging to the Tg1 group to another one due to the Tg2 group were observed. These results clearly reflect the difference in the anionic effects among Br, I, and BF4-. The end of the glass-formation region of [DEME][Br]-H2O mixtures is around x=98.9 and moves to more water-rich region as compared to those of [DEME][BF4]-H2O (x=96.0) and [DEME][I]-H2O (x=95.0) mixtures.

Funder

National Defense Academy of Japan

Publisher

Hindawi Limited

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy,Biophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3