Fracture Resistance Enhancement in Hard Mo-B-C Coatings Tailored by Composition and Microstructure

Author:

Soucek Pavel1ORCID,Zabransky Lukas1ORCID,Bursikova Vilma1,Bursik Jiri2ORCID,Debnarova Stanislava1,Svoboda Milan2ORCID,Perina Vratislav3,Vasina Petr1ORCID

Affiliation:

1. Department of Physical Electronics, Faculty of Science, Masaryk University, Kotlarska 2, 61137 Brno, Czech Republic

2. Institute of Physics of Materials, Academy of Sciences of the Czech Republic, Zizkova 22, 61662 Brno, Czech Republic

3. Nuclear Physics Institute, Academy of Sciences of the Czech Republic, v.v.i., Rez 130, 25068 Rez, Czech Republic

Abstract

State-of-the-art protective coatings often suffer from brittleness. Therefore, the coatings are intensively sought which would simultaneously exhibit high hardness and stiffness with moderate ductility and fracture resistance. In this paper, we report on the nanostructure designing of coatings containing metal, boron, and carbon enabling the simultaneous presence of stiff boridic and carbidic bonds together with weaker metallic bonds to provide coatings with these desirable properties. Three designs are presented with different relative amounts of nanocrystalline and amorphous phases, ranging from near-amorphous to prevalently crystalline microstructure. All presented coatings exhibit an unusual combination of high fracture resistance and high hardness that cannot be achieved with state-of-the-art protective coatings. Indentation tests at high loads revealed that no cracks are present at the surface of the investigated coatings while state-of-the-art ceramic protective coatings already exhibit significant cracking. Cracks in the bulk of the presented coating are detected only when the deformation is so severe that the substrate itself fails.

Funder

NPU I

Publisher

Hindawi Limited

Subject

General Materials Science

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3