Feature Variable Selection Based on VIS-NIR Spectra and Soil Moisture Content Prediction Model Construction

Author:

Zhou Nan123ORCID,Hong Jin123ORCID,Song Bo13,Wu Shichao13ORCID,Wei Yichen123ORCID,Wang Tao4ORCID

Affiliation:

1. Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China

2. University of Science and Technology of China, Hefei 230026, China

3. Key Laboratory of General Optical Calibration and Characterization Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China

4. Key Laboratory of Radiometric Calibration and Validation for Environmental Satellites, Haidian, Beijing 100081, China

Abstract

The hydrological cycle, surface energy balance, and the management of water resources are all significantly impacted by soil moisture. Because it governs the physical processes of evapotranspiration and rainfall penetration, surface soil moisture is a significant climatic variable. In this work, visible-near infrared (VIS-NIR) bands were used to compare and analyze the spectra of loess samples with varying moisture concentrations. The investigation looked at how changes in the soil moisture content impacted the response of the soil spectra. The researchers used a genetic algorithm (GA), interval combination optimization (ICO), and competitive adaptive reweighted sampling (CARS) to filter feature variables from full-band spectral data. To forecast the moisture content of loess on the soil surface, models like partial least squares regression (PLSR), support vector machine (SVM), and random forest (RF) were created. The findings indicate that: (1) the most reliable spectrum preprocessing technique is the first derivative (FD), which can significantly enhance the model’s prediction power and spectral characteristic information. (2) The feature band selection method’s prediction effect of soil moisture content is typically superior to that of full-spectrum data. (3) The random forest (RF) prediction model for soil moisture content with the highest accuracy was built by combining the genetic algorithm (GA) with the FD preprocessed spectra. The results may provide a new understanding on how to use VIS-NIR to measure soil moisture content.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3