Radio Frequency Fingerprinting Identification of Few-Shot Wireless Signals Based on Deep Metric Learning

Author:

Zhao Caidan1ORCID,Yu Jinhui1ORCID,Luo Gege2ORCID,Wu Zhiqiang34ORCID

Affiliation:

1. Department of Informatics, Xiamen University, Xiamen 361000, China

2. Department of Electronic Science and Engineering, Xiamen University, Xiamen 361000, China

3. PKU-Wuhan Institute for Artificial Intelligence, Wuhan 430000, China

4. Department of Electrical Engineering, Wright State University, Dayton, Ohio 45435, USA

Abstract

As a cross-protocol endogenous security mechanism, the physical layer-based radio frequency (RF) fingerprinting can effectively enhance the existing password-based application layer authentication utilizing the hardware differences of wireless devices, which is unique and cannot be counterfeited by a third party. However, the recognition performance of the deep learning physical layer fingerprint recognition algorithm drops sharply in the case of a small number of signal samples. This paper analyzes the feasibility and proposes the few-shot wireless signal classification network based on deep metric learning (FSig-Net). FSig-Net reduces the model’s dependence on big data by adaptively learning the feature distance metric. We use 8 mobile phones and 18 Internet of Things (IoT) modules as targets for identification. When the number of single-type samples is only 10, the recognition accuracy of mobile phones can reach 98.28%, and the recognition accuracy of IoT devices can reach 98.20%.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3