Modelling Friction-Induced Dynamic Instability Dedicated for Isogeometric Formulation

Author:

Mohanasundaram P.1234,Shimoyama K.23ORCID,Gillot F.1ORCID,Besset S.1ORCID

Affiliation:

1. LTDS, École Centrale de Lyon, Écully, France

2. IFS, Tohoku University, Sendai, Japan

3. ELyTMaX IRL3757, CNRS, Université de Lyon, International Joint Unit, Tohoku University, Sendai, Japan

4. Department of Aerospace Engineering, Tohoku University, Sendai, Japan

Abstract

Flutter-type dynamic instability induced by friction is a highly nonlinear phenomenon and computationally expensive to model through transient analysis. An efficient way to make inference of such instabilities in a dynamical system is through analyzing the first-order effect of a perturbation at one of its equilibrium with eigenvalue analysis. The contact characteristics of such dynamical systems are typically modelled through the normal compliance approach with inference from experiments. In this case, the dynamical response of the system is implied to be sensitive to the contact stiffness modelled through the normal compliance approach. Typically, with the normal compliance approach, the continuum of the contact interface is approximated through a set of nonlinear springs which can be interpreted as a collocation method. Such approximations or the numerical implication of contact formulations in general for such problems is not largely studied. We focus on a variational formulation-based contact formulation without domain decomposition which is computationally efficient with small sacrifice in accuracy, where we imply that the dynamical response can be robustly modelled with the given accuracy. Further, we expose the inadequacy of the collocation method for such problems, where the dynamical system is observed to be sensitive to the extent of inaccuracy as a result of collocation for low values of contact stiffness. The inferences numerically imply the characteristics of the dynamical system for variation in contact stiffness.

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3