Affiliation:
1. Department of Electrical Engineering, Jamia Millia Islamia, New Delhi 110025, India
2. Department of Electrical Engineering, Delhi Technological University, New Delhi 110042, India
3. Department of Electrical and Electronics, Hindustan College of Science and Technology, Mathura 281122, India
Abstract
Accurate load forecasting (LF) plays an important role in the operation and decision-making process of the power grid. Although the stochastic and nonlinear behavior of loads is highly dependent on consumer energy requirements, that demands a high level of accuracy in LF. In spite of several research studies being performed in this field, accurate load forecasting remains an important consideration. In this article, the design of a hybrid short-term load forecasting model (STLF) is proposed. This work combines the features of an artificial neural network (ANN), ensemble forecasting, and a deep learning network. RBFNNs and CNNs are trained in two phases using the functional link artificial neural network (FLANN) optimization method with a deep learning structure. The predictions made from RBFNNs have been computed and produced as the forecast of each activated cluster. This framework is known as fuzzy-RBFNN. This proposed framework is outlined to anticipate one-week ahead load demand on an hourly basis, and its accuracy is determined using two case studies, i.e., Hellenic and Cretan power systems. Its results are validated while comparing with four benchmark models like multiple linear regression (MLR), support vector machine (SVM), ML-SVM, and fuzzy-RBFNN in terms of accuracy. To demonstrate the performance of RBF-CNN, SVMs replace the RBF-CNN regressor, and this model is identified as an ML-SVM having 3 layers.
Subject
Electrical and Electronic Engineering,General Computer Science,Signal Processing
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献