Novel Nano-Based Drug Delivery Systems Targeting Hepatic Stellate Cells in the Fibrotic Liver

Author:

Ezhilararasan Devaraj1ORCID,Lakshmi Thangavelu1ORCID,Raut Biond2ORCID

Affiliation:

1. Department of Pharmacology, The Blue Lab, Molecular Medicine and Toxicology Division, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, Tamil Nadu 600077, India

2. Department of Pharmacology, Kathmandu Medical College Bhaktapur Duwakot, Kathmandu University, Dhulikhel, Kavre, Nepal

Abstract

Hepatic stellate cells (HSCs) exist in the liver’s perisinusoidal space, are phenotypically activated, and acquire myofibroblast-like phenotype. This phenotypic transformation is accountable for the accumulation and production of various extracellular matrix (ECM) proteins, involving different fibril-forming collagens in the perisinusoidal space, producing altered hepatic function and portal hypertension and increased vascular resistance, fibrosis, cirrhosis, and hepatocellular carcinoma. The activated HSCs/myofibroblasts are principal collagen-producing cells in the damaged liver. Therefore, fibrosis treatments are often targeting HSCs. HSCs store most of the total body’s retinol in their cytoplasm, and hence, antifibrotic nanomedicines are often targeted with vitamin A decoration. Vitamin A-decorated nanomedicines with siRNAs for transforming growth factor-beta, collagen, and connective tissue growth factors target to inhibit fibrogenesis and the ECM-associated gene expressions, leading to fibrosis regression. Similarly, a variety of miRNAs play pro- and antifibrotic function. In the fibrotic liver, the profibrotic miRNAs are targeted with their respective antagomir and the antifibrotic miRNAs are targeted with their respective agomirs along with HSC-specific nanodecoration. These miRNA treatments reduce fibrogenesis by downregulation of ECM-related gene expressions. However, liver fibrosis is caused by the upregulation of a different type of profibrotic signaling pathways associated with ECM accumulation in the fibrotic liver. Therefore, specific gene silencing by siRNAs or targeting particularly miRNA may also not effectively reduce fibrosis to a greater extent. However, nanodecoration of a drug is useful to deliver drugs into activated HSCs in the injured liver. Therefore, the aim of this review is to focus on targeted drug delivery towards activated HSCs in the persistently damaged liver.

Publisher

Hindawi Limited

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3