A Receiver-Initiated MAC Protocol for Wireless Sensor Networks Based on Tree Topology

Author:

Park Inhye,Yi Joonhwan,Lee Hyungkeun

Abstract

This paper proposes receiver-initiated X-MAC with tree topology (TRIX-MAC), an improved energy-efficient MAC protocol based on an asynchronous duty cycling for wireless sensor networks with tree topology. TRIX-MAC improves energy efficiency through utilizing short preambles and adopting the receiver-initiated approach that minimizes sender nodes’ energy consumption by enabling transmitters to predict receiver nodes’ wake-up times and reduces receiver nodes’ energy consumption by decreasing the number of control frames. In many sensor network applications, the data flow from source nodes to a sink forms a unidirectional tree. A property of tree topology, the parent-child relation, is also exploited to reduce the likelihood of collisions between frames sent by children nodes. We use the network simulator, ns-2, to evaluate TRIX-MAC’s performance. Compared to the prior asynchronous duty cycling approaches of X-MAC, RIX-MAC, and PW-MAC, the proposed protocol shows better performance in terms of throughput, energy efficiency, and end-to-end delay.

Publisher

SAGE Publications

Subject

Computer Networks and Communications,General Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3