Analysis of the Electromagnetic Effect Mechanism of EED under Continuous Wave Radiation

Author:

Wang Biao1ORCID,Sun Yongwei2ORCID,Zhou Shuai2,Li Xiaojian1,Li Nan1,Fan Zhiyou1,Xiong Ying1,Wang Tiannan1

Affiliation:

1. Electromagnetic Compatibility Laboratory, China North Vehicle Research Institute, Beijing 100072, China

2. National Key Laboratory on Electromagnetic Environment Effects, Shijiazhuang Campus of Army Engineering University, Shijiazhuang 050003, China

Abstract

The electromagnetic radiation sensitivity of the electric explosive device (EED) and its installed use state is closely related to the size of the equipment and radiation field strength constraints. The use of the traditional all-level electromagnetic radiation method for the effect of the actual installed EED test in the electromagnetic environment simulation encountered a technical bottleneck. The microwave band is difficult to effectively assess through the current standing wave distribution and skin effect. The temperature rise of the EED bridge wire has no relationship with the frequency of the electromagnetic wave. In this paper, through the analysis of the electromagnetic effect mechanism of the EED, the coupled power model of electromagnetic irradiation of the EED is obtained, and the relationship between the temperature rise of the bridge wire of the EED and the electric field strength model is established. Under the action of high-frequency continuous waves, the electromagnetic effect of the device is tested to verify the correctness of the mechanism analysis of the electromagnetic effect of the device under the action of continuous waves. The results provide crucial technical support for the electromagnetic protection of the device under the harsh electromagnetic environment of the battlefield.

Funder

National Defense Equipment Advance Research Program of China

Publisher

Hindawi Limited

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3