A Rapid UAV Image Georeference Algorithm Developed for Emergency Response

Author:

Wang Shumin1ORCID,Ding Ling1,Chen Zihan1ORCID,Dou Aixia1

Affiliation:

1. Institute of Earthquake Forecasting, China Earthquake Administration, Beijing 100036, China

Abstract

The image collection system based on the unmanned aerial vehicle plays an important role in the postearthquake response and disaster investigation. In the postearthquake response period, for hundreds of image stitching or 3D model reconstruction, the traditional UAV image processing methods may take one or several hours, which need to be improved on the efficiency. To solve this problem, the UAV image rapid georeference method for postearthquake is proposed in this paper. Firstly, we discuss the rapid georeference model of UAV images and then adopt the world file designed and developed by ESRI to organize the georeferenced image data. Next, the direct georeference method based on the position and attitude data collected by the autopilot system is employed to compute the upper-left corner coordinates of the georeferenced images. For the differences of image rotation manners between the rapid georeference model and the world file, the rapid georeference error compensation model from the image rotation is considered in this paper. Finally, feature extraction and feature matching for UAV images and referenced image are used to improve the accuracy of the position parameters in the world file, which will reduce the systematic error of the georeferenced images. We use the UAV images collected from Danling County and Beichuan County, Sichuan Province, to implement the rapid georeference experiments employing different types of UAV. All the images are georeferenced within three minutes. The results show that the algorithm proposed in this paper satisfies the time and accuracy requirements of postearthquake response, which has an important application value.

Funder

China Earthquake Administration

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Instrumentation,Control and Systems Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3