Genetic Evolution and Biological Characteristics of Feline Caliciviruses Isolated from Dogs

Author:

Sun Fanyuan1,Guo Xinyi1,Guo Jinfan1,Zhu Min1,Zhou Huabo2,Chen Jiancai1,Huang Xin1,Chen Hewei1,Xu Yi1,Zhu Yaohui1,Wang Pingping1,Huang Chongqiang1,Long Jianming3,Ouyang Kang1456,Wei Zuzhang1456,Huang Weijian1456,Chen Ying1456ORCID

Affiliation:

1. Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning 530004, China

2. Huabo Pet Hospital, Nanning 530004, China

3. Shenjiu Biological Products Co., Ltd., Nanning 530004, China

4. Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning 530004, China

5. Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning 530004, China

6. Guangxi College and Universities Key Laboratory of Prevention and Control for Animal Disease, Nanning 530004, China

Abstract

Feline calicivirus (FCV) is a highly contagious pathogen associated with oral and upper respiratory tract diseases (URTD), and it is also possibly considered as an enteric pathogen. Some studies found FCV-like viruses in the enteric tract of dogs, but there was a lack of understanding regarding the epidemiology and biological properties of FCVs in dogs. In this study, 252 fecal/feces samples were collected from dogs, with or without diarrhea, from 2020 to 2021. There were 6 FCV-positive samples (2.41%, 6/252), from which only two FCVs were successfully isolated and the complete genome sequences obtained. Phylogenetic analysis showed that the two canine-origin FCV isolates belonged to genogroup I and formed a monophyletic cluster with previous FCV strains, sharing a common ancestor. However, there was genetic diversity when the nt identity of the VP1 proteins between the two canine-origin FCV isolates (77.4% nt identity) was compared. In particular, the genomic sequence of the canine/GXHC01-21 isolate showed evidence of recombination at the 3ʹ end of the ORF1 gene with sequence identity very similar to the FCV strain, GX2019, previously isolated from cats in Guangxi in 2019. A comparison of their replication properties indicated that the two isolates could not replicate efficiently in MDCK cells. This was also seen in the enteric FCV isolate, GXNN04-20. However, both displayed similar plaque phenotypes to the respiratory FCV isolate, GX01-13. In addition, it was found that sera from vaccinated cats had low cross-reactivity in a neutralizing antibody test against the two canine-origin FCV isolates. Moreover, high neutralizing antibody titers (≥1 : 128) against canine-origin FCV viruses were observed in the two canine serum samples. This confirmed that interspecies transmission had occurred between cats and dogs. Our results provided an in-depth understanding of the genetic evolution and characteristics of FCVs circulating in dogs.

Funder

Natural Science Foundation of Guangxi Province

Publisher

Hindawi Limited

Subject

General Veterinary,General Immunology and Microbiology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3