Superparamagnetic Nanoparticles and RNAi-Mediated Gene Silencing: Evolving Class of Cancer Diagnostics and Therapeutics

Author:

Dey Sanchareeka1,Maiti Tapas K.1

Affiliation:

1. Biotechnology Department, Indian Institute of Technology, Kharagpur 721302, India

Abstract

The ever increasing death of patients affected by various types of fatal cancers is of concern worldwide. Curative attempts by radiation/chemotherapy and surgery are often a failure in the long run. Moreover, adverse side effects of such treatments burden the patients with painful survival at the last phase of their life. The failure of early diagnosis is one of the root causes of the problem. Intensive research activities are being pursued in reputed laboratories across the globe to find superior diagnostics and therapeutics. Over the last decade, a number of publications have highlighted RNA interference based silencing of cancer-related gene expression as a promising technology to tackle the aforesaid problems. Superparamagnetic iron oxide nanoparticles (SPIONs) are reported to be excellent vehicles for short-interfering RNA (siRNA). The SPION-siRNA conjugate is biocompatible, stable, and amenable to specific targeting and can cross the blood brain barrier. The issues related to their synthesis, surface properties, delivery, tracking, imaging in relevance to cancer diagnostic and therapeutic, and so forth demand an extensive review, and we have addressed these aspects in this paper. The future prospects of the technology have also been traced.

Publisher

Hindawi Limited

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3