Balancing Rigidity and Safety of Pedicle Screw Fixation via a Novel Expansion Mechanism in a Severely Osteoporotic Model

Author:

Shea Thomas M.12,Doulgeris James J.12,Gonzalez-Blohm Sabrina A.2,Lee William E.1,Aghayev Kamran23ORCID,Vrionis Frank D.23

Affiliation:

1. Department of Chemical & Biomedical Engineering, University of South Florida, Tampa, FL 33620, USA

2. H. Lee Moffitt Cancer Center & Research Institute, Neurooncology Department, Tampa, FL 33612, USA

3. Departments of Neurosurgery and Orthopedics, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA

Abstract

Many successful attempts to increase pullout strength of pedicle screws in osteoporotic bone have been accompanied with an increased risk of catastrophic damage to the patient. To avoid this, a single-armed expansive pedicle screw was designed to increase fixation strength while controlling postfailure damage away from the nerves surrounding the pedicle. The screw was then subsequently tested in two severely osteoporotic models: one representing trabecular bone (with and without the presence of polymethylmethacrylate) and the other representing a combination of trabecular and cortical bone. Maximum pullout strength, stiffness, energy to failure, energy to removal, and size of the resulting block damage were statistically compared among conditions. While expandable pedicle screws produced maximum pullout forces less than or comparable to standard screws, they required a higher amount of energy to be fully removed from both models. Furthermore, damage to the cortical layer in the composite test blocks was smaller in all measured directions for tests involving expandable pedicle screws than those involving standard pedicle screws. This indicates that while initial fixation may not differ in the presence of cortical bone, the expandable pedicle screw offers an increased level of postfailure stability and safety to patients awaiting revision surgery.

Publisher

Hindawi Limited

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3